亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型

工程師鄧生 ? 來(lái)源:未知 ? 作者:劉芹 ? 2023-08-21 17:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中最流行的模型之一,其結(jié)構(gòu)靈活,處理圖像、音頻、自然語(yǔ)言等各種任務(wù)表現(xiàn)出色。在本文中,我們將介紹常見的卷積神經(jīng)網(wǎng)絡(luò)模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。

1. LeNet

LeNet是卷積神經(jīng)網(wǎng)絡(luò)的開山祖師,是由Yan LeCunn在1998年提出的經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)模型。它最初是為手寫體數(shù)字識(shí)別而設(shè)計(jì)的,由卷積層、池化層和全連接層組成。LeNet 的卷積層使用了sigmoid作為激活函數(shù),而池化層使用了平均池化。LeNet是現(xiàn)代卷積神經(jīng)網(wǎng)絡(luò)模型的重要里程碑。

2. AlexNet

AlexNet是2012年ImageNet大規(guī)模視覺識(shí)別挑戰(zhàn)賽冠軍的模型,它被認(rèn)為是卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷史上的分水嶺。AlexNet在其時(shí)代比之前的LeNet模型更深、更寬,使用了更多的神經(jīng)元和非線性激活函數(shù)ReLU。與LeNet相比,AlexNet還使用了Dropout和數(shù)據(jù)增強(qiáng)技術(shù),進(jìn)一步提高了模型的泛化能力。

3. VGG

VGG是由Karen Simonyan和Andrew Zisserman在2014年提出的模型。VGG網(wǎng)絡(luò)結(jié)構(gòu)非常簡(jiǎn)單,由多個(gè)卷積層和池化層組成,幾乎所有卷積層和池化層的大小都為3×3,同時(shí)使用了大量的卷積層。VGG的網(wǎng)絡(luò)結(jié)構(gòu)深度達(dá)到了16或19層,使其在ImageNet比賽中獲得了顯著的成績(jī)。VGG的一個(gè)重要貢獻(xiàn)是在卷積神經(jīng)網(wǎng)絡(luò)模型的設(shè)計(jì)中闡明了卷積層和全連接層之間的關(guān)系。

4. GoogLeNet

由Google團(tuán)隊(duì)開發(fā)的GoogLeNet(Inception-v1)是一種極深的網(wǎng)絡(luò),其特點(diǎn)在于具有多個(gè)不同大小的卷積核和池化的并行模塊。GoogLeNet還使用了1×1的卷積層,它可以降低計(jì)算量,同時(shí)增強(qiáng)了網(wǎng)絡(luò)的非線性能力。這是GoogLeNet中最大的創(chuàng)新。GoogLeNet結(jié)構(gòu)很深,但它通過將卷積層分解成小卷積層,從而避免了參數(shù)過多的問題。

5. ResNet

ResNet是2015年由Kaiming He和他的同事提出的一種深度殘差網(wǎng)絡(luò)。ResNet在深層神經(jīng)網(wǎng)絡(luò)訓(xùn)練中解決了梯度消失的問題,使網(wǎng)絡(luò)具有更高的分類精度。ResNet中使用了殘差學(xué)習(xí),即通過添加跨層連接,每個(gè)殘差單元在原有基礎(chǔ)上進(jìn)行學(xué)習(xí)。這種方法讓即使網(wǎng)絡(luò)非常深,也不會(huì)影響網(wǎng)絡(luò)的收斂,從而讓網(wǎng)絡(luò)可以更好地訓(xùn)練。

6. Inception

Inception由Google機(jī)器人科學(xué)家Christian Szegedy和團(tuán)隊(duì)提出的一種網(wǎng)絡(luò)結(jié)構(gòu),其核心思想是在同一層中采用多個(gè)不同大小的卷積核和池化技術(shù),并將它們合并在一起。Inception V1是第一代版本,因其多層結(jié)構(gòu)和特殊設(shè)計(jì)而成為當(dāng)時(shí)最先進(jìn)的模型之一。

7. Xception

Xception是谷歌DeepMind在2016年提出的一種高效的卷積神經(jīng)網(wǎng)絡(luò)模型。Xception使用了深度可分離卷積層,將卷積層的空間卷積和通道卷積進(jìn)行分離。通常的卷積層近似于進(jìn)行了這兩個(gè)操作的點(diǎn)積,但使用深度可分離卷積可使用更少的參數(shù),同時(shí)減少了計(jì)算復(fù)雜度,提高了模型的性能。

結(jié)論:

卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)中最流行的模型之一,已發(fā)展出許多經(jīng)典模型。本文詳細(xì)介紹了常見的卷積神經(jīng)網(wǎng)絡(luò)模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。每個(gè)模型都有其獨(dú)特的設(shè)計(jì)思想和模型結(jié)構(gòu),可以根據(jù)應(yīng)用場(chǎng)景選擇適合的模型。在未來(lái),卷積神經(jīng)網(wǎng)絡(luò)定將在更多領(lǐng)域中實(shí)現(xiàn)重要的進(jìn)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測(cè)試

    CNN算法簡(jiǎn)介 我們硬件加速器的模型為L(zhǎng)enet-5的變型,網(wǎng)絡(luò)粗略分共有7層,細(xì)分共有13層。包括卷積,最大池化層,激活層,扁平層,全連接層。下面是各層作用介紹: 卷積層:提取
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    整個(gè)模型非常巨大。所以要想實(shí)現(xiàn)輕量級(jí)的CNN神經(jīng)網(wǎng)絡(luò)模型,首先應(yīng)該避免嘗試單層神經(jīng)網(wǎng)絡(luò)。 2)減少卷積核的大?。篊NN
    發(fā)表于 10-28 08:02

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識(shí)別。一旦模型被訓(xùn)練并保存,就可以用于對(duì)新圖像進(jìn)行推理和預(yù)
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來(lái)需要使用擴(kuò)展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對(duì)第一層卷積+池化的部署進(jìn)行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重?cái)?shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對(duì)于權(quán)重
    發(fā)表于 10-20 08:00

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1149次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?1325次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 01-09 10:24 ?1960次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    : TensorFlow是由Google Brain團(tuán)隊(duì)開發(fā)的開源機(jī)器學(xué)習(xí)框架,它支持多種深度學(xué)習(xí)模型的構(gòu)建和訓(xùn)練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴(kuò)展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點(diǎn): 靈活性: Te
    的頭像 發(fā)表于 11-15 15:20 ?987次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1709次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語(yǔ)言處理中的應(yīng)用

    自然語(yǔ)言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識(shí)別和語(yǔ)音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?1107次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種
    的頭像 發(fā)表于 11-15 14:53 ?2327次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?1124次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?2338次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1869次閱讀