亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種前饋神經(jīng)網(wǎng)絡(luò),常用于圖像處理、自然語言處理等領(lǐng)域中。它是一種深度學(xué)習(xí)(Deep Learning)的應(yīng)用,通過運(yùn)用多層卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),可以自動(dòng)地進(jìn)行特征提取和學(xué)習(xí),進(jìn)而實(shí)現(xiàn)圖像分類、物體識別、目標(biāo)檢測、語音識別和自然語言翻譯等任務(wù)。

卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)包括:輸入層、卷積層、激活函數(shù)、池化層和全連接層。

在CNN中,輸入層通常是代表圖像的矩陣或向量,而卷積層是卷積神經(jīng)網(wǎng)絡(luò)的核心部分,它通過滑動(dòng)一個(gè)固定的卷積核(即特征提取器),來對輸入層進(jìn)行卷積運(yùn)算,提取圖像性質(zhì)的特征。每個(gè)卷積層可以包含多個(gè)卷積核,每個(gè)卷積核會(huì)提取出不同的特征,例如邊緣、顏色等。卷積操作是通過卷積核卷積輸入的像素點(diǎn),使用一種相對較小的、共享權(quán)重的濾波器,避免了處理整張輸入數(shù)據(jù)的大的全連接計(jì)算量,減小了參數(shù)的規(guī)模。

卷積層處理后的結(jié)果,需要通過激活函數(shù)來實(shí)現(xiàn)非線性變換,增強(qiáng)模型的表達(dá)能力。常用的激活函數(shù)有:Sigmoid、ReLU、tanh等。

在池化層中,CNN會(huì)采用一個(gè)子采樣來編碼卷積層的輸出,這樣可以減少下一層的輸入神經(jīng)元數(shù)量,進(jìn)而降低計(jì)算量。常用的池化方法有:最大池化和平均池化,分別取卷積后輸出值的最大值或平均值作為池化層輸出。

最終,CNN會(huì)將池化層的輸出連接到一個(gè)或多個(gè)全連接層中,完成對特征的分類和輸出,最后通過Softmax函數(shù)實(shí)現(xiàn)概率分布,確定輸出結(jié)果。

卷積神經(jīng)網(wǎng)絡(luò)中各層結(jié)構(gòu)之間的關(guān)系,實(shí)現(xiàn)了從低層次的特征到高層次的特征提取,從而構(gòu)建了一種復(fù)雜的層次結(jié)構(gòu),可用于目標(biāo)檢測、圖像分類等各種計(jì)算機(jī)視覺任務(wù)中,也可以用于文本分類和語音識別等其他領(lǐng)域任務(wù)中。

總之,卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的典型應(yīng)用包括:圖像識別、圖像降噪、圖像超分辨率、對象檢測、行人重識別、語音識別和自然語言處理等等。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,CNN等卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)將會(huì)在更多的領(lǐng)域得到應(yīng)用,可為人類帶來更多創(chuàng)新和發(fā)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時(shí)的梯度耗散問題。當(dāng)x>0 時(shí),梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x<0 時(shí),該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    , batch_size=512, epochs=20)總結(jié) 這個(gè)核心算法中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程,是用來對MNIST手寫數(shù)字圖像進(jìn)行分類的。模型將圖像作為輸入,通過卷積和池化層提取圖像的特征,然后通過全連接層進(jìn)行分類預(yù)
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴(kuò)展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對第一層卷積+池化的部署進(jìn)行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重?cái)?shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對于權(quán)重
    發(fā)表于 10-20 08:00

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則主要基于以下幾個(gè)方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不
    的頭像 發(fā)表于 02-12 16:41 ?1160次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP
    的頭像 發(fā)表于 02-12 15:53 ?1151次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個(gè)核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?1398次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    : TensorFlow是由Google Brain團(tuán)隊(duì)開發(fā)的開源機(jī)器學(xué)習(xí)框架,它支持多種深度學(xué)習(xí)模型的構(gòu)建和訓(xùn)練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴(kuò)展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點(diǎn): 靈活性: TensorFlow提供了豐富的API,允許用戶
    的頭像 發(fā)表于 11-15 15:20 ?989次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 15:10 ?1709次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?1108次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1.
    的頭像 發(fā)表于 11-15 14:53 ?2327次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其靈感來源于生物的視覺皮層機(jī)制。它通過模擬人類視覺系統(tǒng)的處理方式,能夠自動(dòng)提取圖像特征,從而在圖像識別和分類任務(wù)中表現(xiàn)出色。 卷積
    的頭像 發(fā)表于 11-15 14:52 ?1124次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?2339次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)與工作機(jī)制

    結(jié)構(gòu)與工作機(jī)制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)主要包括以下幾個(gè)部分: 記憶單元(Memory Cell) :
    的頭像 發(fā)表于 11-13 10:05 ?2070次閱讀