亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

新誕生的機器學習框架可以讓你更加直觀、輕松地拼完整個模型

電子工程師 ? 來源:OSC開源社區(qū) ? 作者:OSC開源社區(qū) ? 2022-08-08 16:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

喜歡樂高、熟悉樂高的朋友們應該都是清楚,如今有些樂高產(chǎn)品完全是面向大人的,它們的復雜程度遠高于面向兒童的產(chǎn)品。以樂高千年隼號(Millennium Falcon)和帝國殲星艦(Imperial Star Destroyer)這兩款產(chǎn)品為例,它們的積木顆粒分別為 7541 個和 4784 個,不少人花費了數(shù)月時間才最終拼完。據(jù)說拼過這兩款積木的用戶最后都 “病” 了,癥狀表現(xiàn)為看到積木就頭疼、手不由自主發(fā)抖、容易犯嘔。

不想被一個玩具難倒了?那么這個新誕生的機器學習框架可以讓你更加直觀、輕松地拼完整個模型。

a7af5a88-16c5-11ed-ba43-dac502259ad0.gif

Autodesk、斯坦福大學和麻省理工學院的研究人員探討了將人類設計師創(chuàng)造的基于圖像的、分步驟的裝配手冊翻譯成機器可理解的指令的問題。研究人員將這個問題表述為一個連續(xù)的預測任務:在每個步驟中,該模型都會讀取手冊,定位要添加到當前形狀中的部件,并推斷出它們在三維空間的位置。這項任務帶來的挑戰(zhàn)是在手冊圖像和真實的三維物體之間建立「二維到三維」的對應關系,以及對未見過的三維物體進行三維姿態(tài)預測,因為在一個步驟中要添加的新部件可能是全新的小積木,也可能是由以前的步驟拼成的物體(例如一個人物模型,說明書通常是讓用戶先拼完人物的四肢和頭部,然后再將四肢和頭部與人物主體互相拼接在一起形成整體;而不是像 3D 打印,一步步從頭到腳慢慢成型)。

為了解決這兩個挑戰(zhàn),研究人員提出了一個新的基于學習的框架,即 MEPNet(Manual-to-Executable-Plan Network),它從一連串的手冊圖像中重構拼裝步驟。其關鍵思想是整合神經(jīng)的二維關鍵點檢測模塊和「二維到三維」投影算法,以實現(xiàn)高精度的預測和對未見過的組件的強概括性。通過測試發(fā)現(xiàn),MEPNet 的表現(xiàn)優(yōu)于現(xiàn)有方法。

研究人員表示,現(xiàn)有的將說明書步驟解析為機器可理解的指令的方法主要包括兩種形式,一個是基于搜索的方法,該方法簡單而準確,但計算成本高;另一個是基于學習的模型,速度快,但不善于處理未見過的 3D 形狀,而 MEPNet 結合了上述兩種方法。

除了可以用來拼樂高,在論文中研究人員還表示,他們的目標是創(chuàng)造幫助人們組裝復雜物體的機器,他們的應用范圍除了樂高的積木,還包括宜家的家具。因此利用這個框架,開發(fā)者有望開發(fā)出比普通家具說明更容易讓用戶理解的安裝手冊。

想測試 MEPNet 并且熟悉 Pytorch 的用戶可以在 Github 上找到項目的代碼 :https://github.com/Relento/lego_release

我十分懷疑,開發(fā)這個框架的研究員假借研究的名義偷偷玩樂高。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器學習
    +關注

    關注

    66

    文章

    8536

    瀏覽量

    136112
  • 開源框架
    +關注

    關注

    0

    文章

    33

    瀏覽量

    9586
  • pytorch
    +關注

    關注

    2

    文章

    812

    瀏覽量

    14589

原文標題:樂高、宜家說明書太難懂?Autodesk開源框架幫你解決

文章出處:【微信號:OSC開源社區(qū),微信公眾號:OSC開源社區(qū)】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    量子機器學習入門:三種數(shù)據(jù)編碼方法對比與應用

    在傳統(tǒng)機器學習中數(shù)據(jù)編碼確實相對直觀:獨熱編碼處理類別變量,標準化調整數(shù)值范圍,然后直接輸入模型訓練。整個過程更像是數(shù)據(jù)清洗,而非核心算法組
    的頭像 發(fā)表于 09-15 10:27 ?391次閱讀
    量子<b class='flag-5'>機器</b><b class='flag-5'>學習</b>入門:三種數(shù)據(jù)編碼方法對比與應用

    超小型Neuton機器學習模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應用.

    Neuton 是一家邊緣AI 公司,致力于機器 學習模型更易于使用。它創(chuàng)建的模型比競爭對手的框架
    發(fā)表于 07-31 11:38

    邊緣計算中的機器學習:基于 Linux 系統(tǒng)的實時推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來到Medium的這一角落。在本文中,我們將把一個機器學習模型(神經(jīng)網(wǎng)絡)部署到邊緣設備上,利用從ModbusTCP寄存器獲取的實時數(shù)據(jù)來預測一臺復古音頻放大器的當前健康狀況。
    的頭像 發(fā)表于 06-11 17:22 ?650次閱讀
    邊緣計算中的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>:基于 Linux 系統(tǒng)的實時推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎算法的應用

    視覺巡線,展示了如何從數(shù)據(jù)采集、模型訓練到機器人部署的完整流程。 值得注意的是,深度學習模型的實時性對
    發(fā)表于 05-03 19:41

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】機器人入門的引路書

    的限制和調控) 本書還有很多前沿技術項目的擴展 比如神經(jīng)網(wǎng)絡識別例程,機器學習圖像識別的原理,yolo圖像追蹤的原理 機器學習訓練三大點: 先準備一個基本的
    發(fā)表于 04-30 01:05

    首創(chuàng)開源架構,天璣AI開發(fā)套件端側AI模型接入得心應手

    科正將AI能力體系化并賦能終端生態(tài)。 大會上,聯(lián)發(fā)科定義了“智能體化用戶體驗”的五大特征:主動及時、知懂你、互動協(xié)作、學習進化和專屬隱私信息守護。這五大特征需要跨越從芯片、模型、應用、終端乃至
    發(fā)表于 04-13 19:52

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習
    的頭像 發(fā)表于 02-13 09:39 ?543次閱讀

    模型訓練框架(五)之Accelerate

    輕松切換不同的并行策略,同時它還支持混合精度訓練,可以進一步提升訓練效率。 1. 導入 Accelerate只需添加四行代碼,即可在任何分布式配置中運行相同的 PyTorch 代碼!大規(guī)模訓練和推理
    的頭像 發(fā)表于 01-14 14:24 ?1645次閱讀

    【「具身智能機器人系統(tǒng)」閱讀體驗】2.具身智能機器人大模型

    、醫(yī)療、服務等領域的應用前景更加廣闊,也使得人類能夠更輕松地借助機器完成復雜工作。我深刻認識到,大模型技術正在從根本上改變我們對機器人能力的
    發(fā)表于 12-29 23:04

    Triton編譯器在機器學習中的應用

    多種深度學習框架,如TensorFlow、PyTorch、ONNX等,使得開發(fā)者能夠輕松地將不同框架下訓練的模型部署到GPU上。 2. Tr
    的頭像 發(fā)表于 12-24 18:13 ?1490次閱讀

    《具身智能機器人系統(tǒng)》第7-9章閱讀心得之具身智能機器人與大模型

    醫(yī)療領域,手術輔助機器人需要毫米級的精確控制,書中有介紹基于視覺伺服的實時控制算法,以及如何利用大模型優(yōu)化手術路徑規(guī)劃。工業(yè)場景中,協(xié)作機器人面臨的主要挑戰(zhàn)是快速適應新工藝流程。具身智能通過在線
    發(fā)表于 12-24 15:03

    大語言模型開發(fā)框架是什么

    大語言模型開發(fā)框架是指用于訓練、推理和部署大型語言模型的軟件工具和庫。下面,AI部落小編為您介紹大語言模型開發(fā)框架
    的頭像 發(fā)表于 12-06 10:28 ?749次閱讀

    Arm成功將Arm KleidiAI軟件庫集成到騰訊自研的Angel 機器學習框架

    Arm 與騰訊攜手合作,成功將 Arm KleidiAI 軟件庫集成到騰訊自研的 Angel 機器學習框架。 ? 借助 KleidiAI 解鎖卓越性能、能效和可移植性,騰訊混元大模型
    的頭像 發(fā)表于 11-24 15:33 ?1596次閱讀

    NPU與機器學習算法的關系

    緊密。 NPU的起源與特點 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設計目標是提高機器學習算法的運行效率,特別是在處理
    的頭像 發(fā)表于 11-15 09:19 ?1785次閱讀

    eda在機器學習中的應用

    機器學習項目中,數(shù)據(jù)預處理和理解是成功構建模型的關鍵。探索性數(shù)據(jù)分析(EDA)是這一過程中不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機器學習
    的頭像 發(fā)表于 11-13 10:42 ?1247次閱讀