亚洲精品久久久久久久久久久,亚洲国产精品一区二区制服,亚洲精品午夜精品,国产成人精品综合在线观看,最近2019中文字幕一页二页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

剖析深度學(xué)習(xí)與傳統(tǒng)計(jì)算機(jī)視覺之間的關(guān)系

新機(jī)器視覺 ? 來源:雷鋒網(wǎng) ? 作者:雷鋒網(wǎng) ? 2021-04-22 10:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

某種程度上,深度學(xué)習(xí)最大的優(yōu)勢就是自動創(chuàng)建沒有人會想到的特性能力。

如今,深度學(xué)習(xí)在眾多領(lǐng)域都有一席之地,尤其是在計(jì)算機(jī)視覺領(lǐng)域。盡管許多人都為之深深著迷,然而,深網(wǎng)就相當(dāng)于一個黑盒子,我們大多數(shù)人,甚至是該領(lǐng)域接受過培訓(xùn)的科學(xué)家,都不知道它們究竟是如何運(yùn)作的。

大量有關(guān)深度學(xué)習(xí)的成功或失敗事例給我們上了寶貴的一課,教會我們正確處理數(shù)據(jù)。在這篇文章中,我們將深入剖析深度學(xué)習(xí)的潛力,深度學(xué)習(xí)與經(jīng)典計(jì)算機(jī)視覺的關(guān)系,以及深度學(xué)習(xí)用于關(guān)鍵應(yīng)用程序的潛在危險。

視覺問題的簡單與復(fù)雜

首先,我們需要就視覺/計(jì)算機(jī)視覺問題提出一些看法。原則上它可以這樣理解,人們給定一幅由攝像機(jī)拍攝的圖像,并允許計(jì)算機(jī)回答關(guān)于與該圖像內(nèi)容的相關(guān)問題。

問題的范圍可以從“圖像中是否存在三角形”,“圖像中是否有人臉”等簡單問題到更為復(fù)雜的問題,例如“圖像中是否有狗在追逐貓”。盡管這類的問題看起來很相似,對于人類來說甚至有點(diǎn)微不足道,但事實(shí)證明,這些問題所隱藏的復(fù)雜性存在巨大差異。

雖然回答諸如“圖像中是否有紅圈”或“圖像中有多少亮點(diǎn)”之類的問題相對容易,但其他看似簡單的問題如“圖像中是否有一只貓”,則要復(fù)雜得多?!昂唵巍币曈X問題和“復(fù)雜”視覺問題之間的區(qū)別難以界限。

這一點(diǎn)值得注意,因?yàn)閷τ谌祟愡@種高度視覺化的動物來說,上述所有問題都是不足以成為難題,即便是對孩子們來說,回答上述視覺問題也并不困難。然而,處在變革時期的深度學(xué)習(xí)卻無法回答這些問題。

傳統(tǒng)計(jì)算機(jī)視覺V.S.深度學(xué)習(xí)

傳統(tǒng)計(jì)算機(jī)視覺是廣泛算法的集合,允許計(jì)算機(jī)從圖像中提取信息(通常表示為像素值數(shù)組)。目前,傳統(tǒng)計(jì)算機(jī)視覺已有多種用途,例如對不同的對象進(jìn)行去噪,增強(qiáng)和檢測。

一些用途旨在尋找簡單的幾何原語,如邊緣檢測,形態(tài)分析,霍夫變換,斑點(diǎn)檢測,角點(diǎn)檢測,各種圖像閾值化技術(shù)等。還有一些特征代表技術(shù),如方向梯度直方圖可以作為機(jī)器學(xué)習(xí)分類器的前端,來構(gòu)建更復(fù)雜的檢測器。

與普遍的看法相反,上面討論的工具結(jié)合在一起可以造出針對特定對象的檢測器,這種檢測器性能強(qiáng),效率高。除此之外,人們還可以構(gòu)建面部檢測器,汽車檢測器,路標(biāo)檢測器,在精準(zhǔn)度和計(jì)算復(fù)雜性等方面,這些檢測器很可能優(yōu)于深度學(xué)習(xí)。

但問題是,每個檢測器都需要由有能力的人從頭開始構(gòu)建,這一行為低效又昂貴。因此,從歷史上看,表現(xiàn)優(yōu)良的探測器只適用于那些必須經(jīng)常被檢測,并且能夠證明前期投資是明智的對象。

這些探測器中有許多是專有的,不向公眾開放,比如人臉檢測器,車牌識別器等等。但是,沒有一個心智正常的人會花錢編寫狗探測器或分類器,以便從圖像中對狗的品種進(jìn)行分類。于是,深度學(xué)習(xí)就派上了用場。

尖子生的啟迪

假設(shè)你正在教授計(jì)算機(jī)視覺課程,在課程的前半部分,你要帶領(lǐng)學(xué)生們復(fù)習(xí)大量的專業(yè)知識,然后留時間給學(xué)生完成任務(wù),也就是收集圖像內(nèi)容并提問。任務(wù)一開始很簡單,例如通過詢問圖像中是否有圓形或正方形,再到更復(fù)雜的任務(wù),例如區(qū)分貓和狗。

學(xué)生每周都要編寫計(jì)算機(jī)程序來完成任務(wù),而你負(fù)責(zé)查看學(xué)生編寫的代碼,并運(yùn)行查看它們的效果如何。

這個學(xué)期,一名新生加入了你的班級。他不愛說話,不愛社交,也沒有提過什么問題。但是,當(dāng)他提交自己的第一個任務(wù)方案時,你感到有點(diǎn)意外。這名新生編寫的代碼讓人難以理解,你從來都沒見過這樣的代碼??雌饋硭袷怯秒S機(jī)的過濾器對每幅圖像進(jìn)行卷積,然后再用非常奇怪的邏輯來得到最終的答案。

你運(yùn)行了這段代碼,效果非常好。你心想,雖然這個解決方案非同尋常,但只要它有效就足夠了。幾周過去了,學(xué)生們需要完成的任務(wù)難度越來越高,你也從這名新生那里得到了越來越復(fù)雜的代碼。他的代碼出色地完成了難度日益增大的任務(wù),但你無法真正理解其中的內(nèi)容。

期末的時候,你給學(xué)生們布置了一項(xiàng)作業(yè),用一組真實(shí)的圖片來區(qū)分貓和狗。結(jié)果,沒有學(xué)生能夠在這項(xiàng)任務(wù)上達(dá)到超過65%的準(zhǔn)確率,但是新生編寫的代碼準(zhǔn)確率高達(dá)95%,你大吃一驚。你開始在接下來的幾天中深入分析這些高深莫測的代碼。你給它新的示例,然后進(jìn)行修改,試著找出影響程序決策的因素,對其進(jìn)行反向工程。

最終你得出一個非常令人驚訝的結(jié)論:代碼會檢測出狗的標(biāo)簽。如果它能檢測到標(biāo)簽,那么它就可以判斷對象的下部是否為棕色。如果是,則返回“cat”,否則返回“dog”。如果不能檢測到標(biāo)簽,那么它將檢查對象的左側(cè)是否比右側(cè)更黃。如果是,則返回“dog”,否則返回“cat”。

你邀請這名新生到辦公室,并把研究結(jié)果呈給他。你向他詢問,是否認(rèn)為自己真的解決了問題?在長時間的沉默之后,他終于喃喃自語道,他解決了數(shù)據(jù)集顯示的任務(wù),但他并不知道狗長什么樣,也不知道狗和貓之間有什么不同……

很明顯,他作弊了,因?yàn)樗鉀Q任務(wù)目的和你想要的目的無關(guān)。不過,他又沒有作弊,因?yàn)樗慕鉀Q方案確實(shí)是有效的。然而,其他學(xué)生的表現(xiàn)都不怎么樣。他們試圖通過問題來解決任務(wù),而不是通過原始數(shù)據(jù)集。雖然,他們的程序運(yùn)行得并不好,倒也沒有犯奇怪的錯誤。

深度學(xué)習(xí)的祝福和詛咒

深度學(xué)習(xí)是一種技術(shù),它使用一種稱為梯度反向傳播的優(yōu)化技術(shù)來生成“程序”(也稱為“神經(jīng)網(wǎng)絡(luò)”),就像上面故事中學(xué)者學(xué)生編寫的那些程序一樣。這些“程序”和優(yōu)化技術(shù)對世界一無所知,它所關(guān)心的只是構(gòu)建一組轉(zhuǎn)換和條件,將正確的標(biāo)簽分配給數(shù)據(jù)集中的正確圖像。

通過向訓(xùn)練集添加更多的數(shù)據(jù),可以消除虛假的偏差,但是,伴隨著數(shù)百萬個參數(shù)和數(shù)千個條件檢查,反向傳播生成的“程序”會非常大,非常復(fù)雜,因此它們可以鎖定更細(xì)微偏差的組合。任何通過分配正確標(biāo)簽,來統(tǒng)計(jì)優(yōu)化目標(biāo)函數(shù)的方法都可以使用,不管是否與任務(wù)的“語義精神”有關(guān)。

這些網(wǎng)絡(luò)最終能鎖定“語義正確”的先驗(yàn)嗎?當(dāng)然可以。但是現(xiàn)在有大量的證據(jù)表明,這并不是這些網(wǎng)絡(luò)分內(nèi)之事。相反的例子表明,對圖像進(jìn)行非常微小的、無法察覺的修改就可以改變檢測結(jié)果。

研究人員對訓(xùn)練過的數(shù)據(jù)集的新示例進(jìn)行了研究,結(jié)果表明,原始數(shù)據(jù)集之外的泛化要比數(shù)據(jù)集內(nèi)的泛化弱得多,因此說明,網(wǎng)絡(luò)所依賴的給定數(shù)據(jù)集具有特定的低層特性。在某些情況下,修改單個像素就足以產(chǎn)生一個新的深度網(wǎng)絡(luò)分類器。

在某種程度上,深度學(xué)習(xí)最大的優(yōu)勢就是自動創(chuàng)建沒有人會想到的特性能力,這同時也是它最大的弱點(diǎn),因?yàn)榇蠖鄶?shù)這些功能至少在語義上看起來,可以說是“可疑的”。

什么時候有意義,什么時候沒有意義?

深度學(xué)習(xí)對于計(jì)算機(jī)視覺系統(tǒng)來說無疑是一個有趣的補(bǔ)充。我們現(xiàn)在可以相對容易地“訓(xùn)練”探測器來探測那些昂貴且不切實(shí)際的物體。我們還可以在一定程度上擴(kuò)展這些檢測器,以使用更多的計(jì)算能力。

但我們?yōu)檫@種奢侈付出的代價是高昂的:我們不知道深度學(xué)習(xí)是如何做出判斷,而且我們確實(shí)知道,分類的依據(jù)很可能與任務(wù)的“語義精神”無關(guān)。而且,只要輸入數(shù)據(jù)違反訓(xùn)練集中的低水平偏差,檢測器就會出現(xiàn)失效。這些失效條件目前尚且不為人知。

因此,在實(shí)踐中,深度學(xué)習(xí)對于那些錯誤不是很嚴(yán)重,并且保證輸入不會與訓(xùn)練數(shù)據(jù)集有很大差異的應(yīng)用程序非常有用,這些應(yīng)用能夠承受5%以內(nèi)的錯誤率就沒問題,包括圖像搜索、監(jiān)視、自動化零售,以及幾乎所有不是“關(guān)鍵任務(wù)”的東西。

具有諷刺意味的是,大多數(shù)人認(rèn)為深度學(xué)習(xí)是應(yīng)用領(lǐng)域的一次革命,因?yàn)樯疃葘W(xué)習(xí)的決策具有實(shí)時性,錯誤具有重大性,甚至?xí)?dǎo)致致命的結(jié)果,如自動駕駛汽車,自主機(jī)器人(例如,最近的研究表明,基于深層神經(jīng)網(wǎng)絡(luò)的自主駕駛確實(shí)容易受到現(xiàn)實(shí)生活中的對抗性攻擊)。我只能將這種信念描述為對“不幸”的誤解。

一些人對深度學(xué)習(xí)在醫(yī)學(xué)和診斷中的應(yīng)用寄予厚望。然而,在這方面也有一些令人擔(dān)憂的發(fā)現(xiàn),例如,針對一個機(jī)構(gòu)數(shù)據(jù)的模型未能很好地檢測另一個機(jī)構(gòu)數(shù)據(jù)。這再次印證了一種觀點(diǎn):這些模型獲取的數(shù)據(jù)要比許多研究人員所希望的更淺。

數(shù)據(jù)比我們想象的要淺

出人意料的是,深度學(xué)習(xí)教會了我們一些關(guān)于視覺數(shù)據(jù)(通常是高維數(shù)據(jù))的東西,這個觀點(diǎn)十分有趣:在某種程度上,數(shù)據(jù)比我們過去認(rèn)為的要“淺”得多。

似乎有更多的方法來統(tǒng)計(jì)地分離標(biāo)有高級人類類別的可視化數(shù)據(jù)集,然后有更多的方法來分離這些“語義正確”的數(shù)據(jù)集。換句話說,這組低水平的圖像特征比我們想象的更具“統(tǒng)計(jì)意義”。這是深度學(xué)習(xí)的偉大發(fā)現(xiàn)。

如何生成“語義上合理”的方法來分離可視數(shù)據(jù)集模型的問題仍然存在,事實(shí)上,這個問題現(xiàn)在似乎比以前更難回答。

結(jié)論

深度學(xué)習(xí)已經(jīng)成為計(jì)算機(jī)視覺系統(tǒng)的重要組成部分。但是傳統(tǒng)的計(jì)算機(jī)視覺并沒有走到那一步,而且,它仍然可以用來建造非常強(qiáng)大的探測器。這些人工制作的檢測器在某些特定的數(shù)據(jù)集度量上可能無法實(shí)現(xiàn)深度學(xué)習(xí)的高性能,但是可以保證依賴于輸入的“語義相關(guān)”特性集。

深度學(xué)習(xí)提供了統(tǒng)計(jì)性能強(qiáng)大的檢測器,而且不需要犧牲特征工程,不過仍然需要有大量的標(biāo)記數(shù)據(jù)、大量GPU,以及深度學(xué)習(xí)專家。然而,這些強(qiáng)大的檢測器也會遭遇意外的失敗,因?yàn)樗鼈兊倪m用范圍無法輕易地描述(或者更確切地說,根本無法描述)。

需要注意的是,上面的討論都與“人工智能”中的AI無關(guān)。我不認(rèn)為像深度學(xué)習(xí)與解決人工智能的問題有任何關(guān)系。但我確實(shí)認(rèn)為,將深度學(xué)習(xí)、特性工程和邏輯推理結(jié)合起來,可以在廣泛的自動化空間中實(shí)現(xiàn)非常有趣和有用的技術(shù)能力。

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    5068

    瀏覽量

    134155
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49600

    瀏覽量

    260144
  • 計(jì)算機(jī)視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1713

    瀏覽量

    47425
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1229

    瀏覽量

    26001

原文標(biāo)題:反思深度學(xué)習(xí)與傳統(tǒng)計(jì)算機(jī)視覺的關(guān)系

文章出處:【微信號:vision263com,微信公眾號:新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實(shí)的編程技能才能真正掌握并合理使用這項(xiàng)技術(shù)。事實(shí)上,這種印象忽視了該技術(shù)為機(jī)器視覺(乃至生產(chǎn)自動化)帶來的潛力,因?yàn)?b class='flag-5'>深度學(xué)習(xí)并非只屬于計(jì)算機(jī)
    的頭像 發(fā)表于 09-10 17:38 ?607次閱讀
    如何在機(jī)器<b class='flag-5'>視覺</b>中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    易控智駕榮獲計(jì)算機(jī)視覺頂會CVPR 2025認(rèn)可

    近日,2025年國際計(jì)算機(jī)視覺與模式識別頂級會議(IEEE/CVF Conference on Computer Vision and Pattern Recognition,CVPR 2025)在美國田納西州納什維爾召開。
    的頭像 發(fā)表于 07-29 16:54 ?893次閱讀

    自動化計(jì)算機(jī)的功能與用途

    工業(yè)自動化是指利用自動化計(jì)算機(jī)來控制工業(yè)環(huán)境中的流程、機(jī)器人和機(jī)械,以制造產(chǎn)品或其部件。工業(yè)自動化的目的是提高生產(chǎn)率、增加靈活性,并提升制造過程的質(zhì)量。工業(yè)自動化在汽車制造中體現(xiàn)得最為明顯,其中許多
    的頭像 發(fā)表于 07-15 16:32 ?440次閱讀
    自動化<b class='flag-5'>計(jì)算機(jī)</b>的功能與用途

    工業(yè)計(jì)算機(jī)與商用計(jì)算機(jī)的區(qū)別有哪些

    工業(yè)計(jì)算機(jī)是一種專為工廠和工業(yè)環(huán)境設(shè)計(jì)的計(jì)算系統(tǒng),具有高可靠性和穩(wěn)定性,能夠應(yīng)對惡劣環(huán)境下的自動化、制造和機(jī)器人操作。其特點(diǎn)包括無風(fēng)扇散熱技術(shù)、無電纜連接和防塵防水設(shè)計(jì),使其在各種工業(yè)自動化場景中
    的頭像 發(fā)表于 07-10 16:36 ?452次閱讀
    工業(yè)<b class='flag-5'>計(jì)算機(jī)</b>與商用<b class='flag-5'>計(jì)算機(jī)</b>的區(qū)別有哪些

    一文帶你了解工業(yè)計(jì)算機(jī)尺寸

    一項(xiàng)艱巨的任務(wù)。本博客將指導(dǎo)您了解關(guān)鍵的工業(yè)計(jì)算機(jī)尺寸、使用案例。關(guān)鍵工業(yè)計(jì)算機(jī)外形要素及其使用案例一、工業(yè)微型PC尺寸范圍:寬度:100毫米-180毫米深度:10
    的頭像 發(fā)表于 04-24 13:35 ?699次閱讀
    一文帶你了解工業(yè)<b class='flag-5'>計(jì)算機(jī)</b>尺寸

    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對計(jì)算機(jī)視覺的支持

    計(jì)算機(jī)視覺的支持,擴(kuò)大了當(dāng)前對音頻、雷達(dá)和其他時間序列信號數(shù)據(jù)的支持范圍。在增加這項(xiàng)支持后,該平臺將能夠用于開發(fā)低功耗、低內(nèi)存的邊緣AI視覺模型。這將給諸多應(yīng)用領(lǐng)域的機(jī)器學(xué)習(xí)開發(fā)人員
    的頭像 發(fā)表于 03-11 15:11 ?610次閱讀
    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b>的支持

    Arm KleidiCV與OpenCV集成助力移動端計(jì)算機(jī)視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負(fù)載的廣泛增長,推動了對計(jì)算機(jī)視覺 (CV) 技術(shù)日益高漲的需求。此類技術(shù)能夠解釋并分析源自現(xiàn)實(shí)世界的視覺信息,并可應(yīng)用于人臉識別、照片分類、濾鏡處理及增強(qiáng)現(xiàn)實(shí)
    的頭像 發(fā)表于 02-24 10:15 ?812次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本
    的頭像 發(fā)表于 02-12 15:15 ?1257次閱讀

    AR和VR中的計(jì)算機(jī)視覺

    ):計(jì)算機(jī)視覺引領(lǐng)混合現(xiàn)實(shí)體驗(yàn)增強(qiáng)現(xiàn)實(shí)(AR)和虛擬現(xiàn)實(shí)(VR)正在徹底改變我們與外部世界的互動方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1979次閱讀
    AR和VR中的<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b>

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+兩本互為支持的書

    最近在閱讀《具身智能機(jī)器人系統(tǒng)》這本書的同時,還讀了 《計(jì)算機(jī)視覺之PyTorch數(shù)字圖像處理》一書,這兩本書完全可以視為是互為依托的姊妹篇?!?b class='flag-5'>計(jì)算機(jī)視覺之PyTorch數(shù)字圖像處理》
    發(fā)表于 01-01 15:50

    云端超級計(jì)算機(jī)使用教程

    云端超級計(jì)算機(jī)是一種基于云計(jì)算的高性能計(jì)算服務(wù),它將大量計(jì)算資源和存儲資源集中在一起,通過網(wǎng)絡(luò)向用戶提供按需的計(jì)算服務(wù)。下面,AI部落小編為
    的頭像 發(fā)表于 12-17 10:19 ?792次閱讀

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    力的研究工具。在深度學(xué)習(xí)中,我們會經(jīng)常接觸到兩個名稱,圖像處理和計(jì)算機(jī)視覺,它們之間有什么區(qū)別呢?圖像處理(ImageProcessing)
    的頭像 發(fā)表于 12-14 09:10 ?1185次閱讀
    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣端部署OpenCV

    工業(yè)中使用哪種計(jì)算機(jī)?

    在工業(yè)環(huán)境中,工控機(jī)被廣泛使用。這些計(jì)算機(jī)的設(shè)計(jì)可承受極端溫度、灰塵和振動等惡劣條件。它們比標(biāo)準(zhǔn)消費(fèi)類計(jì)算機(jī)更耐用、更可靠。工業(yè)計(jì)算機(jī)可控制機(jī)器、監(jiān)控流程并實(shí)時收集數(shù)據(jù)。其堅(jiān)固的結(jié)構(gòu)和專業(yè)功能
    的頭像 發(fā)表于 11-29 14:07 ?959次閱讀
    工業(yè)中使用哪種<b class='flag-5'>計(jì)算機(jī)</b>?

    量子計(jì)算機(jī)與普通計(jì)算機(jī)工作原理的區(qū)別

    ? 本文介紹了量子計(jì)算機(jī)與普通計(jì)算機(jī)工作原理的區(qū)別。 量子計(jì)算是一個新興的研究領(lǐng)域,科學(xué)家們利用量子力學(xué),制造出具有革命性能力的計(jì)算機(jī)。雖然現(xiàn)在的量子
    的頭像 發(fā)表于 11-24 11:00 ?2390次閱讀
    量子<b class='flag-5'>計(jì)算機(jī)</b>與普通<b class='flag-5'>計(jì)算機(jī)</b>工作原理的區(qū)別

    pcie在深度學(xué)習(xí)中的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度
    的頭像 發(fā)表于 11-13 10:39 ?1735次閱讀